
of the surface; 90, density of the initial material; Tb, Te, temperature of beginning and 
end of binder decomposition; Ax m = Axm/V, time necessary for the temperature in the chosen 
cross section of the specimen to increase from Tm_ I to Tm; ai, unit function; ~m = (Tm + 
Tm_1)/2, i = ,~; m = i + i; AT = T m - Tm- I. 
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IDENTIFICATION OF THE COMBUSTION FRONT OF AN OIL RESEVOIR 

N. I. Nikitenko UDC 536.24 

A method is proposed for determining the rate of movement of the combustion 
zone in an oil resevoir from temperature perturbations of the earth's surface 
layer. 

One of the most promising methods of increasing the yield of heavy and viscous fuel 
from oil resevolrs is the creation of a combustion zone in the resevoir. Realization of 
this method involves the creation of a system of igniting wells and operating systems. 
The combustion front, initially coincident with the surface of the igniting well, moves 
continuously in the direction of the operating wells at a rate of 5-15 cm a day. The form 
and velocity of the front depend on several factors, including the heterogeneity of the 
resevoir, the number and location of the operating wells, the physical properties of the 
resevoir, the composition, concentration, and rate of extraction of the oil, and the con- 
sumption of injected air. 

It is necessary to control the combustion process in order to ensure stable resevoir 
combustion, an optimum shape for the combustion front, and fuller coverage of the height 
of the resevoir by the front. In order to examine the feasibility of using recorded tem- 
perature perturbations of the earth's surface layer caused by a combination front to deter- 
mine the position of the front, the problem of heat transfer in a rock mass was examined 
with the following assumptions. The temperature field in the mass is described by the heat 
conduction equation. Before the beginning of combustion of the resevoir, the temperature 
field is a function of a single space coordinate z. The z axis is directed along an inter- 
ior normal to the earth's surface. Boundary conditions of the third kind exist on this sur- 
face. In the subsurface layers of the earth (z > z*), the temperature can be assumed to 
be independent of time. A combustion front develops at the moment of time �9 = 0 in the 
resevoir Zin ~ z ~ Zex. The front is a right circular cylinder of finite length H ffi Zex -- 
Zin with its axis parallel to the z axis. The readius of the base of the cylinder is a 
function of T: R = R(~). During the period of time 0 < �9 < ~', when R(T) < s, the combus- 
tion zone retains the form of a circular cylinder. At T > x', the zone takes the form of 
a hollow circular cylinder. The rates v of the change in the radii of the internal tin and 
external cylinders are the same, i.e., R - tin = s. The temperature on the combustion 
front does not change over time. 

The combustion front is identified from the values of excess temperature relative to 
the unperturbed temperature field in the rock mass. The excess temperature function satis- 
fies the following system of equations: 

cp Ot(r' z' x) -- 0 (L Ol(r' z' x) Oz dz ff rl O ( d r  r~ Ot(r, z, ~) ; (1) 
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t (r, z, 0) = 0; 'R (0) = tin(0) = 0; (2)  

Or(r*, 2, "0 = 0 at r* >>R; (3 )  
Or 

t(r, Zin,T ) = t(r, ZOX,q:) ~ -  T ,  r i _ n ~ r ~ R ;  (4) 

t ( R ,  Z, qT) = t ( / in ,  Z, "[) = T ,  gin ~ z - ~ Z e x ;  ( 5 )  

Or(r, O, T) --_ o~t (r, O, x); (6)  
Oz 

t (r, Z*, T) :=- 0 at  z* >> Zex; ( 7 ) 

R = R ( T ) ;  R - - r i n ~ S  at T > T ' ;  R ( T ' ) = s ;  r in=0  at T~ '~ ' .  (8)  
Direct problem (1)-(8) of heat conduction in a rock mass belongs to the class of prob- 

lems with movable boundaries. We solve it using a combination grid method employing explic- 
it phase-boundary determination [i] and an explicit three-layer difference scheme [2]. The 
solution is obtained in a cylindrical coordinate system on a difference grid: z m = Zm_ I + 
hmZ; m = 0, i .... , M, z0 = 0, z M = z*; r i = ri_ I + hir , i = 0, i, .... I n , r 0 = 0, r I = r*~ 
T n = ns n = 0, i, ..., s > I. The boundary conditions determine the grid functions 
tim ~ R ~ and rin ~ at the initial moment of time (n = 0). If tim n, R n, and rin n are already 
determined for the layer n, then their values for the layer n + I are found in the same se- 
quence. Equations (8) are used to determine R n+1 and rin n+1. The temperature tim n+1 at the 
nodal points which are at least one grid spacing distant from the movable boundaries is cal- 
culated from the difference equation 

cp [(1 ~- O) a~t]m- 08~tTmll ~- 0 z (~,in, Oztinm) @ 1 8~ ~ ~ ~ ~r~X~,~8~t~.,), O >/O, (9 )  
Fi 

where 

[( . . . . .  ] 
- -  - -  ~i,m--1 tz n n X Li,m+l @ )~Tm) li,m+lhZm+ , tim (%im @ Xi,m+l) tim hmZ " 

1 I(r~+Y/+~,m + r~,~%) • 
[ 

X tn@l ,m - -  t r im (gi~tn -~ /'i--l~in--1 ,ra) t im - -  t i - I  ,m 

The necessary condition of stability of Eq. (9) 

l~ [(h~)-Z+(h%) -~1 ( 10 ) 
(1 + 2o) co ~< o,s 

makes it possible, by varying the parameter 0, to choose any grid spacings - as in implicit 
schemes. In performing the calculations, we took 8 = 2. This corresponds to a fivefold in- 
crease in s compared to the maximum time step for a normal explicit scheme. 

At nodal points closer than one grid spacing to the boundaries of the moving combus- 
tion zone on the layer n, the function tim n+1 is found from an implicit difference equation. 
The value of tim n+1 is determined by linear interpolation at the point located in the com- 
bustion zone at the moment ~n and outside the zone at the moment Xn+ I [i]. 

The position of the external boundary of the region r = r* is chosen on the basis of 
the criterion of smooth conjugation of the temperature and its derivatives up to the k-th 
order within the region in question and in the external space [i]. To determine the laws 
governing the change in the temperature field in a rock mass in the presence of a radially 
expanding annular zone, we conducted numerical experiments in which we took a uniform dif- 
ference grid and a constant rate of displacement of the combustion zone. 
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Fig. i. Radial distribution of relative temperature on the 
earth's surface in the vicinity of an igniting well at dif- 
ferent moments of time: i) Fo = 0.i; 2) 0.2; 3) 0.3; 4) 
0.4; 5) 0.5; 6) 0.6; 7) 0.7. 

Fig. 2. Change in the temperature on the earth's surface 
in relation to the Fourier numher at different distances 
from the igniting well: i) r/Zin = 0; 2) 0.5; 3) i; 4) 1.5; 
5) 2. 

Fig. 3. Change in the Fourier numbers at which the maximum 
temperature is reached in relation to the velocity of the 
combustion front at different values of the relative distance 
r/Zin: i) r/zi9 = 0.2; 2) 0.566; 3) 1.13; 4) 1.695; 5) 2.66; 
6) 2.825. v, mlsec. 

Figure i shows curves depicting the radial distribution of temperature on the earth's 
.surface with the following initial data: Pe = VZin/a = 5.45; Nu = ~Zin/l = 20; s = s/Zin = 
0.56. It is evident from the figure that with a fixed value of the Fourier number Fo = 
aT/zba, the curve t(~, 0, Fo), ~ = r/zin has one maximum. At the initial moment 0 < Fo < 
0.3, this maximum is located at the point ~ = 0. It henceforth moves in the radial direc- 
tion at a velocity close to the velocity of the combustion front. Figure 2 shows graphs 
depicting the change in t(~, 0, Fo) in relation to the Fourier number at different dis- 
tances from the igniting well. It isevident from the figure that the rate of change in 
temperature 8t/aFo initially increases. Having reached an inflection point at which the 
temperature is about tmax/3, the rate then decreases. The temperature t(~, 0, Fo) reaches 
the maximum value tma x at Tmax- With a further increase in Fo, ~the derivative 8t/SFo at 
first increases monotonically and then again decreases. 

Figure 3 shows curves depicting the change in the number Fo at which t(~, 0, Fo) 
reaches the maximum value tma x. The change in Fo is shown as a function of v for different 
relative distances. The value tma x is reached earlier at an arbitrary point on the earth's 
surface, the greater the velocity v. Here, an increase in the distance from the well is 
accompanied by an increase in the derivative of the number Fo corresponding to the maximum 
temperature with respect to v. 

Analysis of the numerical results permits the conclusion that the following measure- 
ments can be used to find the rate of displacement v of the combustion zone: a) the tem- 
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perature at a certain point near the earth's surface; b) the time ~max from the moment of 
ignition of the resevoir to the moment when the maximum temperature tma x is reached on the 
surface; c) the time tif at which the first inflection of the function t is attained at the 
point on the surface. 

Below, we present an algorithm for determining the rate of displacement of the combina- 
tion zone in the time function by solving the inverse heat conduction problem. The algorithm 
is based on the method of discrete coincidence [i]. As the initial data, we assign the value 
of Imax or ~if at a certain number J of points on the earth's surface or t(~, 0, Fo) for a 
point with the coordinate ~ with J values of the number Fo. For determinateness, we will 
consider the value of ~max j (J = 0, 1 ..... J - i) to be assigned. We assume that the 
function v can be approximated by a truncated power series 

v = v o + vix + v2x2-? ... + VK~ K. ( 1 1 )  

The algorithm does not undergo significant change if v is approximated by a smoothing spline 
or a Fourier series. If the coefficients of series (ii) are determined in the usual manner, 
then we arrive at a direct heat-conduction problem whose solution algorithm was described 
above. The solution of this problem gives us model values of ~max(m)j and the errors ~j = 
~maxj - ~max(m)J, which serve as a basis for subsequent refinement of the parameters v~ (j = 
0, i, .... K) in (ii). We use the method of successive error minimization [i] to searSh for 
optimum values of the parameters v i that will satisfy the conditions l~jl < 6 for the error 
n i, where 6 is a certain small positive quantity. Each initial parameter v k (k = 0, I, ..., 
K] is correlated with a certain error qk (k = 0, I, ..., K). As a first approximation, we 
assign values of the parameters Vk(1). For example, we assume that v0(1)= const > 0, while 
Vk(~) = 0 (k = i, 2 ..... K). 

Solution of the direct heat-conduction problem yields the error ~0(~) in the first ap- 
proximation. We introduce a small trial step Av0(~) = v0(2) - v0(~) for the parameter v0 
and we again solve the same problem. In the second approximation, we find the error ~0(2), 
the error increment A~0(~ ) = ~0(2) - ~0(~), and the approximate value of the derivative 
~0/~v0 = A~0(~)/Av0(~). Then we introduce several working steps for the parameter v 0 with 
fixed values for the other parameters until we satisfy the condition I~01 ~ 6. The size of 
the working steps is determined from the formula Av k = ~k(~k/~Vk). The derivative ~k/~Vk 
can be refined after each ~-th working step from the difference relation 

I ~UI~ = : Uhig} - -  U}~(6_I) 

--~1~ ) ']h(B, - -  I]k(~-l, 

We w i l l  a s s u m e  t h a t  f o r  t h e  e r r o r s  nk (k  = O, 1, . . . .  b;  b < K) ,  c o r r e s p o n d i n g  t o  t h e  
parameters v0, v I ..... Vb, the condition lqkl ~ 6 is already satisfied. We assume further 
that it is necessary to determine values of the parameters v 0, v I, ..., Vb+ I satisfying the 
inequalities IUkl S 6 (k = 0, i, ..., b + i). First we introduce the trial step AVb+1(1) 
for the parameter Vb+1, i.e., we take Vb+l(2) = Vb+l(1 ) + AVb+1(l ). After each ~-th step 
for the parameter Vb+1, we perform a cycle of calculations connected with the change in the 
parameters v0, vt ..... v b until we satisfy condition INkl ~ 6 for k = 0, 1 ..... b. In this 
cycle, no trial steps are introduced to find the derivative (SUk/SVk)(1). If the error of 

J 

the solution ]J~b+1~ = qi(b-l)) >l]v(~,~, J>b, then we take K = b. The result can be further 
7=:I 

refined by comparing other values of ~maxj from the prescribed values with the parameters 

v k �9 

Let us present some results of the solution of the inverse heat-conduction problem in 
a rock mass in the case when the time rma x over which the maximum value of temperature tma x 
is reached at a given point of the region under consideration is measured with the error 

H~ = (~max - ~maxt)/Tmaxt (Imax and [maxt are measured and true values of time over which 
tma x is reached). In numerical experiments, the procedure of establishing a link between 
the error H~ and H v is executed in this sequence. With assigned values for the initial 
data (including the rate of displacement of the combustion front vt), we solve the direct 
heat-conduction problem and we find values of ~maxt" We then solve the inverse problem, 

in which we assign ~max = ~maxt (I + H~) in place of v t and we find v and Hv = (v - vt)/v t. 
For values of velocity v equal to 0.5"10 -6 , 10 -6 , and 1.5.10 -6 m/sec, the relative error 

Hv/H ~ is 1.32, 1.58, and 1.92 at H~ = 1% and 1.3, 1.63, and 1.94 at H T = 6%. At gT = 0, 
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the error g v is within the error of the direct problem. The results of the numerical ex- 
periments show that the error of the determination of combustion front velocity is only 
slightly greater than the error of the initial data - particularly in regard to the model 
parameters pc, k, Zin, Zex, T, ~ -- and that it increases somewhat with an increase in v. 

NOTATION 

s, width of the combustion front; v, velocity of the combustion front; ~, time; c, 
heat capacity; p, density; k, thermal conductivity; T, temperature on the combustion front 
in the resevoir; ~max, time of attainment of the maximum temperature at a given point of 
the region; gx, error of measurement of ~max; Ev, error of determination of velocity v; Pc, 
Peclet number; Nu, Nusselt number; Fo, Fourier number. 

i, 
2. 
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OPTIMUM PLANNING OF EXPERIMENTS IN THE IDENTIFICATION 

OF HEAT-TRANSFER PROCESSES 

E. A. Artyukhin UDC 519.24 

An analysis is made of problems involving the optimum planning of nonsteady- 
state experiments conducted to identify thermal processes in structural mater- 
ials and elements. 

In mathematical models used for the theoretical analysis of the thermal operating con- 
ditions of different materials and structures, it is possible to distinguish three inter- 
connected parts: i) internal heat transfer; 2) he~t transfer on the surface interacting 
with the environment; 3) applied thermal loads. Each of these components of the overall 
model is usually written approximately with allowance for the main governing factors, and 
each usually contains several characteristics. Identification methods, based on the solu- 
tion of inverse heat-conductionproblems, have recently begun to be widely used to deter- 
mine these characteristics. 

As an example, we will examine a unidimensional process involving the unilateral heat- 
ing of a structural elementwith allowance for radiation from the heated surface. The mathe- 
matical model of the process has the form 

C(7') OT - 0 ( --Ox O@x ) + S ( T ) '  O < x < b '  O < X < T m '  

T(x, O)= To(x), O<~x<~b, 

OT (O, "~) _ O, 
Ox 

qx (x) = - -  k (T (b, x)) OT (b, x) = q (~) _ ~ (T) ~T~. 
Ox 

Equation (i) describes internal heat transfer in the material of the structural ele- 
ment and contains the characteristics C(T), k(T), and S(T). Heat balance equation (4) es- 
tablishes the model of heat transfer on the surface of the structure which interacts with 
the environment, and it includes the characteristic e(T) and the thermal load q(~). Here, 
the value of q(x) can be determined by calculation [2]. The characteristics C(T), k(T), 

(1) 

(2) 

(3) 

(4) 
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